

What You'll Learn

Key Ideas

- Apply inequalities to segment and angle measures. (Lesson 7-1)
- Identify exterior angles and remote interior angles of a triangle and use the Exterior Angle Theorem. (Lesson 7-2)
- Identify the relationships between the sides and angles of a triangle. (Lesson 7-3)
- Identify and use the Triangle Inequality Theorem.
(Lesson 7-4)

Key Vocabulary

exterior angle (p. 282)
inequality (p. 276)
remote interior angles
(p. 282)

Why It's Important

Entertainment Early moviemakers created illusions by stopping and restarting the camera or splicing film. Later, bluescreen and split-screen compositing allowed two or more separately shot scenes to be merged. Now computers make it possible to add or alter elements for perfect special effects.

Triangle inequalities can be used to analyze how objects are arranged. You will investigate how triangles are used to create a movie special effect in Lesson 7-2.

Study these lessons to improve your skills.

Lesson 2-1, pp. 50-53

Algebra Review, p. 725

Use the number line to find each measure.

1. $A D$
2. $D E$
3. DH
4. $A C$
5. $B F$
6. $G H$

Solve each inequality. Graph the solution on a number line.
7. $n+7<12$
8. $14+p<32$
9. $55+r<90$
10. $18>d-4$
11. $w-15>15$
12. $22-t>15$

Lesson 3-5, pp. 116-121

Refer to the figure.
13. Name two pairs of adjacent angles.
14. Name a pair of supplementary angles.
15. Find the measure of $\angle C F B$.

FOLDABLES

Study Organizer

(1) Fold lengthwise to the holes.

Make this Foldable to help you organize your Chapter 7 notes. Begin with a sheet of notebook paper.

(2) Cut along the top line and then cut four tabs.

(3) Label each tab with an inequality symbol.

Reading and Writing Store your Foldable in a 3-ring binder. As you read and study the chapter, describe each inequality symbol and give examples of its use under each tab.

7-1
 Segments, Angles, and Inequalities

What You'll Learn

You'll learn to apply inequalities to segment and angle measures.

Why It's Important construction
Relationships between segment measures and angle measures are important in construction. See Examples 3 \& 4.

The Comparison Property of Numbers is used to compare two line segments of unequal measures. The property states that given two unequal numbers a and b, either $a<b$ or $a>b$. The same property is also used to compare angles of unequal measures. (Recall that measures of angles are real numbers.)

The length of $\overline{T U}$ is less than the length of $\overline{V W}$, or $T U<V W$.

The measure of $\angle J$ is greater than the measure of $\angle K$, or $m \angle J>m \angle K$.

The statements $T U<V W$ and $m \angle J>m \angle K$ are called inequalities because they contain the symbol $<$ or $>$. We can write inequalities to compare measures since measures are real numbers.

| Postulate 7-1
 Comparison
 Property | Words: | For any two real numbers, a and b, exactly one of
 the following statements is true. |
| :---: | :--- | :--- | :--- |
| | Symbols: | $a<b \quad a=b \quad a>b$ |

Example -1 Replace with \langle,$\rangle , or =$ to make a true sentence.

Look Back

Finding Distance on a Number Line: Lesson 2-1
$S L \bigcirc R L$

$$
S L \bigcirc R L
$$

$2-(-5) \bigcirc 2-(-3) \quad$ Subtract to find distance.

$$
7>5
$$

Simplify.

Your Turn
a. $N D \bigcirc R D$
b. $S R \bigcirc D N$

Theorem 7-1				

A similar theorem for comparing angle measures is stated below. This theorem is based on the Angle Addition Postulate.

We can use Theorem 7-2 to solve the following problem.

Example Music Link

inferneT

Data Update For the latest information on world music sales, visit: www.geomconcepts.com

The graph shows the portion of music sales for each continent. Replace with $<,>$, or $=$ to make a true sentence.

$$
m \angle S C I \bigcirc m \angle U C I
$$

Since $\overline{C S}$ is between $\overline{C U}$ and $\overline{C I}$, then by Theorem $7-2, m \angle S C I<m \angle U C I$.

Check:

Federation of the Phonographic Industry
$m \angle S C I ? ~ ? ~=U C I$
$40 \stackrel{?}{\gtrless} 79+40$ Replace $m \angle$ SCI with 40 and $m \angle$ UCI with $79+40$.
$40<119$
Your Turn
c. $m \angle M C S \bigcirc m \angle I C M$
d. $m \angle U C M \bigcirc m \angle I C M$

Inequalities comparing segment measures or angle measures may also include the symbols listed in the table below.

Symbol	Statement	Words	Meaning
\neq	$M N \neq Q R$	The measure of $\overline{M N}$ is not equal to the measure of $\overline{Q R}$.	$M N<Q R$ or $M N>Q R$
\leq	$m \angle E \leq m \angle J$	The measure of angle E is less than or equal to the measure of angle J.	$m \angle E<m \angle J$ or $m \angle E=m \angle J$
\geq	$P F \geq K D$	The measure of $\overline{P F}$ is greater than or equal to the measure of $\overline{K D .}$	$P F>K D$ or $P F=K D$
\neq	$Z Y \neq L N$	The measure of $\overline{Z Y}$ is not less than or equal to the measure of $\overline{L N}$.	$Z Y>L N$

The diagram at the right shows the plans for a garden arbor. Use the diagram to determine whether each statement is true or false.
(3) $A B \leq J K$
$48 \leq 36 \quad$ Replace $A B$ with 48 and
JK with 36.

This is false because 48 is not less than or equal to 36 .
(4) $m \angle L K N \neq m \angle L K H$
$45 \nsupseteq 90$ Replace $m \angle L K N$ with 45 and $m \angle L K H$ with 90 .

This is true because 45 is not greater
 than or equal to 90 .

Your Turn

e. $N K \neq H A$
f. $m \angle Q H C \neq m \angle J K H$

There are many useful properties of inequalities of real numbers that can be applied to segment and angle measures. Two of these properties are illustrated in the following example.

Algebra Review

Solving Inequalities, p. 725

Diamonds are cut at angles that will create maximum sparkle. In the diamond at the right, $m \angle Q<m \angle N$. If each of these measures were multiplied by 1.2 to give a different type of cut, would the inequality still be true?

$$
\begin{array}{rlrl}
m \angle Q & <m \angle N & & \\
82 & <98 & & \text { Replace } m \angle Q \text { with } 82 \text { and } m \angle N \text { with } 98 . \\
82 \cdot 1.2 & ? 98 \cdot 1.2 & & \text { Multiply each side by 1.2. } \\
98.4 & <117.6 & &
\end{array}
$$

Therefore, the original inequality still holds true.

Your IUrn

g. Suppose each side of the diamond was decreased by 0.9 millimeter. Write an inequality comparing the lengths of $\overline{T N}$ and $\overline{R S}$.

Example 5 demonstrates how the multiplication and subtraction properties of inequalities for real numbers can be applied to geometric measures. These properties, as well as others, are listed in the following table.

Property	Words	Example
Transitive Property	For any numbers a, b, and c, 1. if $a<b$ and $b<c$, then $a<c$. 2. if $a>b$ and $b>c$, then $a>c$.	$\begin{aligned} & \text { If } 6<7 \text { and } 7<10 \text {, then } 6<10 \text {. } \\ & \text { If } 9>5 \text { and } 5>4 \text {, then } 9>4 \text {. } \end{aligned}$
Addition and Subtraction Properties	For any numbers a, b, and c, 1. if $a<b$, then $a+c<b+c$ and $a-c<b-c$. 2. if $a>b$, then $a+c>b+c$ and $a-c>b-c$.	$\begin{array}{rlrl} 1 & <3 & 1 & <3 \\ 1+8 & <3+8 & 1-8 & <3-8 \\ 9 & <11 & -7 & <-5 \end{array}$ Write an example for part 2.
Multiplication and Division Properties	For any numbers a, b, and c, 1. if $c>0$ and $a<b$, then $a c<b c$ and $\frac{a}{c}<\frac{b}{c}$. 2. if $c>0$ and $a>b$, then $a c>b c$ and $\frac{a}{c}>\frac{b}{c}$.	12 <18 12 <18 $12 \cdot 2$ $<18 \cdot 2$ $\frac{12}{2}$ $<\frac{18}{2}$ 24 <36 6 Write an example for part 2.

Communicating Mathematics

Guided Practice

Examples 1 \& 2

Examples 3 \& 4

1. Translate the statement $m \angle J \nsubseteq m \angle T$ into words two different ways. Then draw and label a pair of angles that shows the statement is true.
2. M is the midpoint of $\overline{A B}$, and P is the midpoint of $\overline{M B}$. The length of $\overline{M P}$ is greater than 7 .
a. Make a drawing of $\overline{A B}$ showing the location of points M and P.
b. Write an inequality that represents the length of $\overline{A B}$.
3. $1 \mid$ Mayuko says that if $a>7$ and $b<7$, then $a>b$. Lisa says that $a<b$. Who is correct? Explain your reasoning.

Getting Ready

State whether the given number is a possible value of n.

Sample: $n \neq 15$; 11
Solution: n cannot be less than or equal to 15 .
So, 11 is not a possible value.
4. $n \neq 0 ;-4$
5. $n>86 ; 80$
6. $n \neq 23 ; 23$

Replace each with $<,>$, or $=$ to make a true sentence.
7. $K P \bigcirc P L$
8. $m \angle J P L \bigcirc m \angle K P M$

Examples $3 \& 4$ Determine if each statement is true or false.
9. $J P \neq P M$
10. $m \angle K P M \geq m \angle L P K$

Exercises 7-10
11. Biology Use the relative sizes of queen bees q, drones d, and worker bees w to write a sentence that shows the Transitive Property of Inequality. Example 5

Exercises

Practice

Replace each with $<,>$, or $=$ to make a true sentence.
12. $M T \bigcirc J T$
13. $H K \bigcirc O K$
14. $J U \bigcirc O S$

Determine if each statement is true or false.
15. $M H \geq J S$
16. $H T \leq T M$
17. $K H \neq U K$

Homework Help For Exercises	
$12-20$	See Examples
$21-28$	3,2
$31-32$	5
Extra Practice	
See page 738.	

Lines $B E, F C$, and $A D$ intersect at G. Replace each with $<,>$, or $=$ to make a true sentence.
18. $m \angle B G C \bigcirc m \angle A G C$
19. $m \angle B G C \bigcirc m \angle F G E$
20. $m \angle A G C \bigcirc m \angle C G E$

Exercises 18-28

Determine if each statement is true or false.
21. $m \angle A G F \geq m \angle D G C$
23. $m \angle A G E \neq m \angle B G D$
25. $m \angle F G E \cdot 2=m \angle B G C \cdot 2$
27. $m \angle D G E-15>m \angle C G D-15$
28. $m \angle C G E+m \angle B G C<m \angle F G E+m \angle B G C$
29. If $J K=58$ and $G H=67-3 b$, what values of b make $J K \geq G H$?
30. If $m \angle Q=62$ and $m \angle R=44-3 y$, what values of y make $m \angle Q<m \angle R$?
31. Algebra If $m \angle 1=94, m \angle 2=16-5 x$, and $m \angle 1=m \angle 2+10$, find the value of x.
32. Art Important factors in still-life drawings are reference points and distances. The objects at the right are set up for a still-life drawing. If the artist moves the objects apart so that all the measures are increased by 3 centimeters, is the statement $M S<S D$ true or false? Explain.
33. Critical Thinking If $r<s$ and $p<q$, is it true that $r p<s q$? Explain. (Hint: Look for a counterexample.)

Exercise 32

Find the distance between each pair of points. (Lesson 6-7)
34. $C(1,5)$ and $D(-3,2)$
35. $L(0,-9)$ and $M(8,-9)$
36. The lengths of three sides of a triangle are 4 feet, 6 feet, and 9 feet. Is the triangle a right triangle? (Lesson 6-6)
37. Construction Draw an isosceles right triangle. Then construct the three angle bisectors of the triangle. (Lesson 6-3)
38. Name all angles congruent to the given angle. (Lesson 4-3)
a. $\angle 2$
b. $\angle 7$
c. $\angle 8$

Standardized Test Practice

Applications and Problem Solving

Mixed Review

7-2 Exterior Angle Theorem

What You'll Learn

You'll learn to identify exterior angles and remote interior angles of a triangle and use the Exterior Angle Theorem.

Why It's Important Interior Design Designers use exterior angles to create patterns. See Exercise 8.

In the figure at the right, recall that $\angle 1, \angle 2$, and $\angle 3$ are interior angles of $\triangle P Q R$. Angle 4 is called an exterior angle of $\triangle P Q R$. An exterior angle of a triangle is an angle that forms a linear pair with one of the angles of the triangle.

In $\triangle P Q R, \angle 4$ is an exterior angle at R because it forms a linear pair with $\angle 3$. Remote interior angles of a triangle are the two angles that do not form a linear pair with the exterior angle. In $\triangle P Q R, \angle 1$ and $\angle 2$ are the remote interior angles with respect to $\angle 4$.

Each exterior angle has corresponding remote interior angles. How many exterior angles does $\triangle X Y Z$ below have?

Vertex	Exterior Angle	Remote Interior Angles
X	$\angle 4$	$\angle 2$ and $\angle 3$
X	$\angle 9$	$\angle 2$ and $\angle 3$
Y	$\angle 5$	$\angle 1$ and $\angle 3$
Y	$\angle 6$	$\angle 1$ and $\angle 3$
Z	$\angle 7$	$\angle 1$ and $\angle 2$
Z	$\angle 8$	$\angle 1$ and $\angle 2$

Notice that there are two exterior angles at each vertex and that those two exterior angles have the same remote interior angles. Also observe that an exterior angle is never a vertical angle to an angle of the triangle.

In the music stand, name the remote interior angles with respect to $\angle 1$.

Angle 1 forms a linear pair with $\angle 2$. Therefore, $\angle 3$ and $\angle 4$ are remote interior angles with respect to $\angle 1$.

Your Turn

a. In the figure above, $\angle 2$ and $\angle 3$ are remote interior angles with respect to what angle?

You can investigate the relationships among the interior and exterior angles of a triangle.

Step 1 Use a straightedge to draw and label $\triangle R P N$. Extend side $\overline{R N}$ through K to form the exterior angle 4.

Step 2 Measure the angles of the
 triangle and the exterior angle.
Step 3 Find $m \angle 1+m \angle 2$.
Step 4 Make a table like the one below to record the angle measures.

$m \angle 1$	$m \angle 2$	$m \angle 1+m \angle 2$	$m \angle 4$
31	103	134	134

Try These

1. Draw other triangles and collect the same data. Record the data in your table.
2. Do you see any patterns in your data? Make a conjecture that describes what you see.

The relationship you investigated in the activity above suggests the following theorem.

| Words: | The measure of an exterior angle of a triangle is equal
 to the sum of the measures of its two remote interior
 angles. |
| :--- | :--- | :--- | :--- |
| Theorem 7-3
 Exterior Angle
 Theorem | Model: |
| Symbols: $\quad m \angle 4=m \angle 1+m \angle 2$ | |

Examples

Algebra Link

Algebra Review

Solving Multi-Step
Equations, p. 723
(2) If $m \angle 2=38$ and $m \angle 4=134$, what is $m \angle 5$?

Examples 2-3

$$
\begin{aligned}
m \angle 4 & =m \angle 2+m \angle 5 & & \text { Exterior Angle Theorem } \\
134 & =38+m \angle 5 & & \text { Replace } m \angle 4 \text { with } 134 \text { and } m \angle 2 \text { with } 38 . \\
134-38 & =38+m \angle 5-38 & & \text { Subtract } 38 \text { from each side. } \\
96 & =m \angle 5 & & \text { Simplify. }
\end{aligned}
$$

(3) If $m \angle 2=x+17, m \angle 3=2 x$, and $m \angle 6=101$, find the value of x.

$$
\begin{aligned}
m \angle 6 & =m \angle 2+m \angle 3 & & \text { Exterior Angle Theorem } \\
101 & =(x+17)+2 x & & \text { Replace } m \angle 6 \text { with } 101, m \angle 2 \text { with } x+17, \text { and } \\
101 & =3 x+17 & & m \angle 3 \text { with } 2 x . \\
101-17 & =3 x+17-17 & & \text { Subtract } 17 \text { from each side. } \\
84 & =3 x & & \text { Simplify. } \\
\frac{84}{3} & =\frac{3 x}{3} & & \text { Divide each side by } 3 . \\
28 & =x & & \text { Simplify. }
\end{aligned}
$$

Your Turn

Refer to the figure above.

b. What is $m \angle 1$ if $m \angle 3=46$ and $m \angle 5=96$?
c. If $m \angle 2=3 x, m \angle 3=x+34$, and $m \angle 6=98$, find the value of x. Then find $m \angle 3$.

There are two other theorems that relate to the Exterior Angle Theorem. In the triangle at the right, $\angle Q R S$ is an exterior angle, and $\angle S$ and $\angle T$ are its remote interior angles. The Exterior Angle Theorem states that

$$
m \angle Q R S=m \angle S+m \angle T .
$$

In $\triangle R S T$, you can see that the measure of $\angle Q R S$ is greater than the measures of both $\angle S$ and $\angle T$, because $110>40$ and $110>70$. This suggests Theorem 7-4.

Theorem 7-4 Exterior Angle Inequality Theorem

Words: The measure of an exterior angle of a triangle is greater than the measure of either of its two remote interior angles.

Model:

Symbols:

$m \angle 4>m \angle 1$
$m \angle 4>m \angle 2$

Example -4 Name two angles in $\triangle M A L$ that have measures less than 90.

$\angle M L C$ is a 90° exterior angle. $\angle M$ and $\angle A$ are its remote interior angles. By Theorem $7-4, m \angle M L C>m \angle 1$ and $m \angle M L C>m \angle 2$. Therefore, $\angle 1$ and $\angle 2$ have measures less than 90.

Your Turn

d. Name two angles in $\triangle V W X$ that have measures less than 74 .

The results of Example 4 suggest the following theorem about the angles of a right triangle.

$$
\begin{aligned}
& \text { Theorem 7-5 } \begin{array}{l}
\text { If a triangle has one right angle, then the other two angles must } \\
\text { be acute. }
\end{array}
\end{aligned}
$$

Check for Understanding

Communicating Mathematics

1. Draw a triangle and extend all of the sides. Identify an exterior angle at each of the vertices.
2. Trace $\triangle A B C$ on a blank piece of paper and cut out the triangle. Tear off corners with $\angle C$ and $\angle A$, and use the pieces to show that the Exterior Angle Theorem is true. Explain.

Guided Practice

Example 1
Example 2
Example 3

Example 4

Example 4
3. Antar Maurice says that the two exterior angles at the same vertex of a triangle are always congruent. Juan says it is impossible for the angles to be congruent. Who is correct?
Explain your reasoning.
4. Name two remote interior angles with respect to $\angle A K L$.
5. If $m \angle 3=65$ and $m \angle 5=142$, what is $m \angle 2$?

Exercises

Practice

Homework Help For Exercises	
$9-11$	See Examples
$12-17,24$	2
22	3
Extra Practice	
See page 738.	

Name the following angles.

9. an exterior angle of $\triangle S E T$
10. an interior angle of $\triangle S C T$
11. a remote interior angle of $\triangle T C E$ with respect to $\angle J E T$

Find the measure of each angle.
12. $\angle 4$

13. $\angle J$

14. $\angle A$

15. Find the value of x.
16. Find $m \angle C$.
17. Find $m \angle Y$.

Exercises 15-17

Replace each with $<,>$, or $=$ to make a true sentence.
18.

$m \angle 3 \bigcirc m \angle 1$
19.

20.

$$
m \angle 8 \bigcirc m \angle 6+m \angle 7
$$

21. Write a relationship for $m \angle B A C$ and $m \angle A C D$ using $<,>$, or $=$.
22. Find the value of x.

Applications and Problem Solving

Mixed Review

Standardized Test Practice (A) B C C

23. Botany The feather-shaped leaf at the right is called a pinnatifid. In the figure, does $x=y$? Explain.

24. Critical Thinking If $\triangle A B C \cong \triangle X B D$, find the measure of $\angle 1$.

25. Entertainment For the 1978 movie Superman, the flying scenes were filmed using angled mirrors as shown in the diagram at the left. Find x, the measure of the angle made by the two-way mirror and the camera projection.

26. Transportation Corning, Red Bluff, and Redding are California cities that lie on the same line, with Red Bluff in the center. Write a sentence using $<,>$, or $=$ to compare the distance from Corning to Redding $C R$ and the distance from Corning to Red Bluff $C B$. (Lesson 7-1)
27. Determine whether $\triangle X Y Z$ with vertices $X(-2,6), Y(6,4)$, and $Z(0,-2)$ is an isosceles triangle. Explain. (Lesson 6-7)
Find the perimeter and area of each rectangle. (Lesson 1-6)
28. $\ell=12$ feet, $w=16$ feet
29. $\ell=3.5$ meters, $w=1.2$ meters
30. Multiple Choice What is the solution to $60 \leq 9 r-21 \leq 87$?
(Algebra Review)
(A) $-9 \leq r \leq-12$ (B) $9 \leq r \leq 12$ (C) $9 \geq r \geq 12$ (D) $12 \leq r \leq 9$

Chapter 7 Investigation

Linguine Trianglles Hold the Sauce!

Materials

 unlined paper rulerprotractor
uncooked linguine

Measures of Angles and Sides in Triangles

What happens to the length of a side of a triangle as you increase the measure of the angle opposite that side? How does this change in angle measure affect the triangle? In this investigation, you will use linguine noodles to explore this relationship.

Investigate

1. Use uncooked linguine to investigate three different triangles. First, break a piece of linguine into two 3 -inch lengths.
a. Using a protractor as a guide, place the two 3-inch pieces of linguine together to form a 30° angle. Break a third piece of linguine so its length forms a triangle with the first two pieces. Trace around the triangle and label it Triangle 1. Measure and record the length of

Triangle 1 the third side of the triangle.
b. Using a protractor, place the two 3-inch pieces of linguine together to form a 60° angle. Break another piece of linguine and use it to form a triangle with the first two pieces. Trace around the triangle and label it Triangle 2. Measure and record the length of the third side of your triangle.
c. Using a protractor, place the two 3-inch pieces of linguine together to form a 90° angle. Break another piece of linguine and use it to form a triangle with the first two pieces. Trace around the triangle and label it Triangle 3. Measure and record the length of the third side of the triangle.
d. As the angle opposite the third side of the triangle increases, what happens to the measure of the third side?
2. Break four pieces of linguine so that you have the following lengths: 2 inches, 3 inches, 4 inches, and 5 inches.
a. Use a protractor to form a 40° angle between the 2 -inch piece and the 3 -inch piece as shown at the right. Break a third piece of linguine to form a triangle. Trace around the triangle and label it Triangle 4. Record the
 measure of angle 1 shown in the figure.
b. In the linguine triangle from Step 2a, replace the 3-inch piece with the 4-inch piece. Keep the angle measure between the pieces 40°. Break a third piece of linguine to form a triangle. Trace around the triangle and label it Triangle 5. Record the measure of angle 1.
c. In the linguine triangle from Step 2 b , replace the 4-inch piece with the 5 -inch piece. Keep the angle measure between the pieces 40°. Break a third piece of linguine to form a triangle. Trace around the triangle and label it Triangle 6. Record the measure of angle 1.
d. In the three triangles that you formed, each contained a 40° angle. One side remained 2 inches long, but the other side adjacent to the 40° angle increased from 3 to 4 to 5 inches. As that side increased in length, what happened to the measure of angle 1?

Extending the Investigation

In this extension, you will further investigate the relationship between the measures of the sides and angles in triangles.
Use linguine, geometry drawing software, or a graphing calculator to investigate these questions.

1. What happens to the length of the third side of a triangle as the angle between the other two sides ranges from 90° to 150° ?
2. What happens to the measure of an angle of a triangle as you increase the length of the side opposite that angle?

Presenting Your Conclusions

Here are some ideas to help you present your conclusions to the class.

- Make a display or poster of your findings in this investigation.
- Write a description of the steps to follow to complete this investigation using geometry drawing software or a graphing calculator.

[^0]
7-8

 Inequalities Within a Triangle
What You'll Learn

You'll learn to identify the relationships between the sides and angles of a triangle.
Why It's Important Surveying Triangle relationships are important in undersea surveying.
See Example 2.

Graphing

 Calculator Tutorial See pp. 782-785.Florists often use triangles as guides in their flower arrangements. There are special relationships between the side measures and angle measures of each triangle. You will discover these relationships in the following activity.

Suppose in triangle $A B C$, the inequality $A C>B C$ holds true. Is there a similar relationship between the angles $\angle B$ and $\angle A$, which are across from those sides?

Graphing Calculator Exploration

Step 1 Use the Triangle tool on $F 2$ to draw and label $\triangle A B C$.
Step 2 Select Measure from the F5 menu. Then use the Distance \& Length tool and the Angle tool on F6 to display the measures of the sides and angles of $\triangle A B C$.

Try These

1. Refer to the triangle drawn using the steps above.
a. What is the measure of the largest angle in your triangle?
b. What is the measure of
 the side opposite the largest angle?
c. What is the measure of the smallest angle in your triangle?
d. What is the measure of the side opposite the smallest angle?
2. Drag vertex A to a different location.
a. What are the lengths of the longest and shortest sides of the new triangle?
b. What can you conclude about the measures of the angles of a triangle and the measures of the sides opposite these angles?
3. Use the Perpendicular Bisector tool on F3 to draw the perpendicular bisector of side $A B$. Drag vertex C very close to the perpendicular bisector. What do you observe about the measures of the sides and angles?

The observations you made in the previous activity suggest the following theorem.

The converse of Theorem 7-6 is also true.

	Words:	If the measures of three angles of a triangle are unequal, then the measures of the sides opposite those angles are unequal in the same order.	
Theorem 7-7			Symbols: $\begin{gathered} m \angle W<m \angle J<m \angle K \\ J K<K W<W J \end{gathered}$

Example -1 In $\triangle L M R$, list the angles in order

 from least to greatest measure.

First, write the segment measures in order from least to greatest.

Then, use Theorem 7-6 to write the measures of the angles opposite those
 sides in the same order.

The angles in order from least to greatest measure are $\angle L, \angle M$, and $\angle R$.

Your Turn

a. In $\triangle D S T$, list the sides in order from least to greatest measure.

Undersea Robot Vehicle, Oberon

Scientists are developing automated robots for underwater surveying. These undersea vehicles will be guided along by sonar and cameras. If $\triangle N P Q$ represents the intended course for an undersea vehicle, which segment of the trip will be the longest?

First, write the angle measures in order from least to greatest.

Then, use Theorem 7-7 to write the measures of the sides opposite those angles in the same order.

So, $\overline{Q N}$, the first segment of the course, will be the longest.

Your Turn

b. If $\triangle A B C$ represents a course for an undersea vehicle, which turn will be the sharpest-that is, which angle has the least measure?

$$
P Q<N P<Q N
$$

Example 2 illustrates an argument for the following theorem.

Check for Understanding

Communicating Mathematics

1. Name the angle opposite $\overline{Z H}$ in $\triangle G H Z$.
2. Choose the correct value for x in $\triangle G H Z$ without using the Pythagorean Theorem: 14, 16, or 20. Explain how you made your choice.

3. Writing Math Identify the shortest segment from point P to line ℓ. Write a conjecture in your journal about the shortest segment from a point to a line.

Guided Practice

Example 1
4. List the angles in order from least to greatest measure.
5. List the sides in order from least to greatest measure.

Example 2
6. Identify the angle with the greatest measure.

7. Identify the side with the greatest measure.

8. Driving The road sign indicates that a steep hill is ahead.
a. Use a ruler to measure the sides of $\triangle S T E$ to the nearest millimeter. Then list the sides in order from least to greatest measure.
b. List the angles in order from least to greatest measure. Example 2

Lombard Street, San Francisco

Exercises

Practice

List the angles in order from least to greatest measure.
9.

10.

11.

Lesson 7-3 Inequalities Within a Triangle

Homework Help	
For Exercises	See Examples
$9-11,15-17$, 22,23	1
$12-14,18-20$, 21,24	2
Extra Practice	
See page 739.	

List the sides in order from least to greatest measure.

12.

13. N

14.

Identify the angle with the greatest measure.
15.

16.

17.

Identify the side with the greatest measure.
18.

19.

20.

21. In $\triangle P R S, m \angle P=30, m \angle R=45$, and $m \angle S=105$. Which side of $\triangle P R S$ has the greatest measure?
22. In $\triangle W Q F, W Q>Q F>F W$. Which angle of $\triangle W Q F$ has the greatest measure?
23. Archaeology Egyptian carpenters used a tool called an adze to smooth and shape wooden objects. Does $\angle E$, the angle the copper blade makes with the handle, have a measure less than or greater than the measure of $\angle G$, the angle the copper blade makes with the work surface? Explain.

24. Maps Two roads meet at an angle of 50° at point A. A third road from B to C makes an angle of 45° with the road from A to C. Which intersection, A or B, is closer to C ? Explain.

25. Critical Thinking In an obtuse triangle, why is the longest side opposite the obtuse angle?

Mixed Review

Standardized Test Practice (A) B C C

26. The measures of two interior angles of a triangle are 17 and 68. What is the measure of the exterior angle opposite these angles? (Lesson 7-2)
27. Algebra If $m \angle R=48$ and $m \angle S=2 x-10$, what values of x make $m \angle R \geq m \angle S$? (Lesson 7-1)

Complete each congruence statement. (Lesson 5-4)
28.

$$
\triangle M L K \cong \triangle \quad ?
$$

29.

$\triangle Y X W \cong \triangle \quad ?$
30. Short Response Sketch at least three different quilt patterns that could be made using transformations of the basic square shown at the right. Identify each transformation. (Lesson 5-3)

Quiz Lessons 7-1 through 7-3

Replace each with $<,>$, or $=$ to make a true sentence. (Lesson 7-1)

1. $J A$
ST
2. $m \angle J S T \bigcirc m \angle S T N$

Find the measure of each angle. (Lesson 7-2)
3. $\angle 2$

4. $\angle D$

5. Geography Perth, Darwin, and Sydney are three cities in Australia. Which two of the cities are the farthest apart? (Lesson 7-3)

7-4 Triangle Inequality Theorem

What You'll Learn

You'll learn to identify and use the Triangle Inequality Theorem.

Why It's Important
Aviation Pilots use triangle inequalities when conducting search-and-rescue operations. See page 301.

Can you always make a triangle with any three line segments? For example, three segments of lengths 1 centimeter, 1.5 centimeters, and 3 centimeters are given. According to the Triangle Inequality Theorem, it is not possible to make a triangle with the three segments. Why? The sum of any two sides of a triangle has to be greater than the third side.

You can use the Triangle Inequality Theorem to verify the possible measures for sides of a triangle.

Examples

Determine if the three numbers can be measures of the sides of a triangle.
(1) $5,7,4$
$5+7>4$ yes
$5+4>7$ yes
$7+4>5$ yes
All possible cases are true. Sides with these measures can form a triangle.

11, 3, 7
$11+3>7$ yes
$11+7>3$ yes
$7+3>11$ nо
All possible cases are not true. Sides with these measures cannot form a triangle.

Your Turn

a. Determine if 16,10 , and 5 can be measures of the sides of a triangle.

The next example shows another way you can use the Triangle Inequality Theorem.

Example -3

Suppose $\triangle X Y Z$ has side $\overline{Y X}$ that measures 10 centimeters and side $\overline{X Z}$ that measures 7 centimeters. What are the greatest and least possible whole-number measures
 for $\overline{Y Z}$?

Explore Cut one straw 10 centimeters long and another straw 7 centimeters long. Connect the two straws with a pin to form a moveable joint.

Plan Lay the straws on a flat surface along a ruler. Hold the end representing point Y at the 0 point on the ruler.
Solve With your other hand, push point X toward the ruler. When X is touching the ruler, the measure is about 17 centimeters. So the greatest measure possible for $\overline{Y Z}$ is just less
 than 17. Now slide the end representing point Z toward the 0 point on the ruler. Just left of 3 centimeters, the point Z can no longer lie along the ruler. So the least possible measure is just
 greater than 3.
Therefore, $\overline{Y Z}$ can be as long as 16 centimeters and as short as 4 centimeters.

Examine Notice that $16<10+7$ and $4>10-7$.

Your Turn

b. What are the greatest and least possible whole-number measures for the third side of a triangle if the other two sides measure 8 inches and 3 inches?

Example 3 shows that the measure of an unknown side of a triangle must be less than the sum of the measures of the two known sides and greater than the difference of the measures of the two known sides.

Example
History Link

The Grecian catapult at the right was used for siege warfare during the time of ancient Greece. If the two ropes are each 4 feet long, find x, the range of the possible distances between the ropes.

Let x be the measure of the third side of the triangle.
x is greater than the difference of the measures of the two other sides.
$x>4-4$
$x>0$
x is less than the sum of the measures of the two other sides.

$$
\begin{aligned}
& x<4+4 \\
& x<8
\end{aligned}
$$

The measure of the third side is greater than 0 but less than 8 . This can be written as $0<x<8$.

Your Turn

c. If the measures of two sides of a triangle are 9 and 13 , find the range of possible measures of the third side.

Bheck for Understanding

Communicating Mathematics

1. Select a possible measure for the third side of a triangle if its other two sides have measures 17 and 9 .
2. State three inequalities that relate the measures of the sides of the triangle.

3. Writing Math Draw a triangle in your journal and explain why the shortest distance between two points is a straight line.

Guided Practice

Example 3

Examples 1 \& 2

Example 4

Determine if the three numbers can be measures of the sides of a triangle. Write yes or no. Explain.
4. $15,8,29$

If two sides of a triangle have the following measures, find the range of possible measures for the third side.
6. 17,8
7. 40,62
8. Birds If $\angle F G H$ in the flock of migrating geese changes, what are the greatest and least possible whole number values of x ?
5. $100,100,8$

Exercise 8

Exercises

Practice

Homework Help	
For	See
Exercises	Examples
$9-14$	1,2
$15-26$	3,4
Extra Practice	
See page 739.	

Determine if the three numbers can be measures of the sides of a triangle. Write yes or no. Explain.
9. $7,12,8$
10. $6,7,13$
11. $1,2,3$
12. $9,10,14$
13. $5,10,20$
14. 60, 70, 140

If two sides of a triangle have the following measures, find the range of possible measures for the third side.
15. 12,8
16. 2,7
17. 21, 22
18. 5,16
19. 44,38
20. 81,100
21. The sum of $K L$ and $K M$ is greater than \qquad ? .
22. If $K M=5$ and $K L=3$, then $L M$ must be greater than \qquad and less than \qquad ? .
23. Determine the range of possible values for x if $K M=x, K L=61$, and $L M=83$.

Exercises 21-23

Applications and Problem Solving

Standardized Test Practice

 (A) B C24. Design Some kitchen planners design kitchens by drawing a triangle and placing an appliance at each vertex. If the distance from the refrigerator to the sink is 6 feet and the distance from the sink to the range is 5 feet, what are possible distances between the refrigerator and the range?

25. History Early Egyptians made triangles using a rope with knots tied at equal intervals. Each vertex of the triangle had to be at a knot. How many different triangles could you make with a rope with exactly 13 knots as shown below? Sketch each possible triangle.
26. Critical Thinking In trapezoid $A B C D$, $A B=10, B C=23$, and $C D=11$. What is the range of possible measures for $\overline{A D}$? (Hint: First find the range of possible measures for $\overline{A C}$.)

27. Art The drawing at the right shows the geometric arrangement of the objects in the painting Apples and Oranges. In each triangle, list the sides in order from least to greatest length. (Lesson 7-3)
a. $\triangle L M N$
b. $\triangle U V W$
c. $\triangle B C D$

Paul Cezanne, Apples and Oranges

Exercises 27-28
28. What is the measure of the exterior angle at D ? (Lesson 7-2)
29. Camping When Kendra's tent is set up, the front of the tent is in the shape of an isosceles triangle. If each tent side makes a 75° angle with the ground, what is the measure of the angle at which the sides of the tent meet? (Lesson 6-5)
30. Grid In Find the value of x in the figure at the right. (Lesson 3-6)

31. Multiple Choice Points J, K, and L are collinear, with K between J and L. If $K L=6 \frac{1}{3}$ and $J L=16 \frac{2}{5}$, what is the measure of $\overline{J K}$? (Lesson 2-2)
(A) 10
(B) $10 \frac{1}{15}$
(C) $22 \frac{1}{2}$
(D) $22 \frac{11}{15}$

In the Workplace

Pilot

In search-and-rescue operations, direction findings are used to locate emergency radio beacons from a downed airplane. When two search teams from different locations detect the radio beacon, the directions of the radio signals can pinpoint the position of the plane.

Suppose search teams S and T have detected the emergency radio beacon from an airplane at point A. Team T measures the direction of the radio beacon signal 52° east of north. Team S measures the direction of the radio beacon signal 98° east of north and the direction of Team T 150° east of north.

1. Find the measure of each angle.
a. 1
b. 2
c. 3
2. Which search team is closer to the downed airplane?

FAGT FACES About Pilots

Working Conditions

- often have irregular schedules and odd hours
- does not involve much physical effort, but can be mentally stressful
- must be alert and quick to react

Education

- commercial pilot's license
- 250 hours flight experience
- written and flying exams
- Most airlines require at least two years of college, including mathematics courses essential for navigation techniques.

Employment

Pilot Certificates, 2000

Source: Federal Aviation Administration

Career Data For the latest information on a career as a pilot, visit:

GHAPTER
 7 Study Guide and Assessment

Understanding and Using the Vocabulary

After completing this chapter, you should be able to define each term, property, or phrase and give an example or two of each.

 exterior angle (p. 282)inequality (p.276)

BITTNET

Review Activities
For more review activities, visit www.geomconcepts.com
remote interior angles (p. 282)

Determine whether each statement is true or false. If the statement is false, replace the underlined word or phrase to make it true.

1. The expression $4 y-9 \leq 5$ is an example of an equation.
2. In Figure $1, \angle 3, \angle 5$, and $\angle 8$ are exterior angles.
3. $C M \geq B Q$ means the length of $\overline{C M}$ is less than the length of $\overline{B Q}$.
4. A remote interior angle of a triangle is an angle that forms a linear pair with one of the angles of the triangle.
5. The Triangle Inequality Theorem states that the sum of the measures of any two sides of a triangle is greater than the measure of the third side.

Figure 1
6. In Figure 1, $m \angle 7=m \angle 5+m \angle 8$ by the Interior Angle Theorem.
7. $m \angle Z<m \angle Y$ means the measure of angle Z is less than or equal to the measure of angle Y.
8. In Figure 1, the exterior angles at K are $\angle 6, \angle 9$, and $\angle B K D$.
9. In Figure $2, E F+F G$ is equal to $E G$.
10. In Figure 2, if $F G=5$ and $E F=9$, a possible measure for $\overline{E G}$ is 13.9 .

Figure 2

Skills and Concepts

Objectives and Examples

- Lesson 7-1 Apply inequalities to segment and angle measures.
$L P>L N$
$L P>N P$
$m \angle G B K>m \angle G B H$
$m \angle G B K>m \angle H B K$

Review Exercises

Replace each with $<,>$, or $=$ to make a true sentence.
11. $m \angle F R V \bigcirc m \angle F R M$
12. $J R \bigcirc R F$
13. $F V \bigcirc F M$
14. $m \angle J R V \bigcirc m \angle M R F$

Exercises 11-16

Determine if each statement is true or false.
15. $F M \neq J R$
16. $m \angle J R F \geq m \angle V R J$

Objectives and Examples

- Lesson 7-2 Identify exterior angles and remote interior angles of a triangle.

Interior angles of $\triangle U V W$ are $\angle 2, \angle 4$, and $\angle 5$.

Exterior angles of $\triangle U V W$ are $\angle 1, \angle 3$, and $\angle 6$.

The remote interior angles of $\triangle U V W$ with respect to $\angle 1$ are $\angle 4$ and $\angle 5$.

Review Exercises

Name the angles.

17. an exterior angle of $\triangle Q A J$
18. all interior angles of $\triangle Z A Q$
19. a remote interior angle of $\triangle Q Z J$ with respect to $\angle 1$
20. a remote interior angle of $\triangle Z A Q$ with respect to $\angle 2$

Exercises 17-20

- Lesson 7-2 Use the Exterior Angle Theorem.

If $m \angle 1=75$ and $m \angle 4=35$, find $m \angle 3$.
$\angle 1$ and $\angle 4$ are remote interior angles of $\triangle C D N$ with respect
 to $\angle 3$.
$m \angle 3=m \angle 1+m \angle 4 \quad$ Exterior Angle Theorem $m \angle 3=75+35$ Substitution
$m \angle 3=110$

Find the measure of each angle.
21. $m \angle P H F$

22. $m \angle R Y K$

23. Replace with $<,>$, or $=$ to make a true sentence. $m \angle E \bigcirc 108$
24. Find the value of x.
25. Find $m \angle B$.
26. Find $m \angle E$.

- Lesson 7-3 Identify the relationships between the sides and angles of a triangle.

$$
\begin{gathered}
m \angle S<m \angle R<m \angle O \\
O R<S O<R S
\end{gathered}
$$

$$
\begin{gathered}
J K<K N<N J \\
m \angle N<m \angle J<m \angle K
\end{gathered}
$$

List the angles in order from least to greatest measure.
27.

28.

Identify the side with the greatest measure.
29.

30.

Chapter 7 Study Guide and Assessment

Objectives and Examples

- Lesson 7-4 Identify and use the Triangle Inequality Theorem.

Determine if 15,6 , and 7 can be the measures of the sides of a triangle.

By the Triangle Inequality Theorem, the following inequalities must be true.

$$
\begin{array}{ll}
15+6>7 & \text { yes } \\
15+7>6 & \text { yes } \\
6+7>15 & \text { no }
\end{array}
$$

Since all possible cases are not true, sides with these measures cannot form a triangle.

Review Exercises

Determine if the three numbers can be measures of the sides of a triangle. Write yes or no. Explain.
31. $12,5,13$
32. $27,11,39$
33. $15,45,60$

If two sides of a triangle have the following measures, find the range of possible measures for the third side.
34. 2,9
35. 10,30
36. 34,18

Applications and Problem Solving

37. History The Underground Railroad used quilts as coded directions. In the quilt block shown below, the right triangles symbolize flying geese, a message to follow these birds north to Canada. If $m \angle F L G=135$ and $m \angle L S G=6 x-18$, find the value of x. (Lesson 7-2)

38. Problem Solving True or false: $T A=K T$. Explain. (Lesson 7-3)

39. Theater A theater has spotlights that move along a track in the ceiling 16 feet above the stage. The lights maintain their desired intensity for up to 30 feet. One light is originally positioned directly over center stage C. At what distance d from C will the light begin to lose its desired intensity? (Lesson 7-4)

CHAPTEB
 Test

Replace each with $<,>$, or $=$ to make a true sentence.

1. $B K \bigcirc J K$
2. $m \angle D J K \bigcirc m \angle B D K$
3. $m \angle B J D \bigcirc m \angle D K F$
4. $J F \bigcirc D F$
5. $B D$
KF
6. $m \angle J D F \bigcirc m \angle F D K$

Determine if each statement is true or false.

7. $m \angle K F D>m \angle J K D$
8. $B K \geq D F$
9. $m \angle B D F \nexists m \angle D K F$
10. $J F \neq B D$

11. Name all interior angles of $\triangle N L E$.
12. Name an exterior angle of $\triangle K N C$.
13. Name a remote interior angle of $\triangle K R E$ with respect to $\angle K R L$.
14. Find $m \angle 2$.
15. Find $m \angle 5$.

Exercises 11-17

Replace each with $<,>$, or $=$ to make a true sentence.
16. $m \angle 3 \bigcirc m \angle R L C$
17. $m \angle 2+m \angle 3 \bigcirc m \angle 1$
18. In $\triangle M P Q$, list the sides in order from least to greatest measure.
19. In $\triangle X Y Z$, identify the angle with the greatest measure.
20. In $\triangle B T W, m \angle B=36, m \angle T=84$, and $m \angle W=60$.

Exercise 18

Exercise 19 Which side of $\triangle B T W$ has the greatest measure?
21. Is it possible for 3,7 , and 11 to be the measures of the sides of a triangle? Explain.
22. In $\triangle F G W, F G=12$ and $F W=19$. If $G W=x$, determine the range of possible values for x.
23. Algebra If $m \angle T H M=82$, find the value of x.

Exercise 23
24. Language The character below means mountain in Chinese. The character is enlarged on a copy machine so that it is 3 times as large as shown. Write a relationship comparing $C D$ and $E G$ in the enlarged figure using $<,>$, or $=$.

25. Storage Jana is assembling a metal shelving unit to use in her garage. The unit uses triangular braces for support, as shown in the diagram below. Piece r is 60 inches long and piece v is 25 inches long. Find the range of possible lengths for piece t before all the pieces are permanently fastened together.

Algebra Word Problems

You will need to write equations and solve word problems on most standardized tests.

The most common types of word problems involve consecutive integers, total cost, ages, motion, investments, or coins.

Test-Taking Tip
Memorize this list of key terms to translate from English to mathematics.

is, are	$=$
of, product, times	\times
more, sum	+
less, difference	-
ratio, quotient	\div

Example 1

Lin's Sundae Shoppe has a make-it-yourself sundae bar. A bowl of ice cream costs $\$ 2$. Each topping costs $\$ 0.25$. Which of the following equations shows the relationship between t, the number of toppings added, and C, the cost of the sundae?
(A) $C=2+0.25 t$
(B) $C=2(t+0.25)$
(C) $C=0.25(2+t)$
(D) $C=2+\frac{t}{0.25}$

Hint Write the equation and then compare it to the answer choices.

Solution Translate the words into algebra. The total cost is the cost of the ice cream and the toppings. Each topping costs $\$ 0.25$. The word each tells you to multiply.
\(\underbrace{Cost}_{C} \underbrace{\substack{cost of

ice cream}}_{\)| $=$ |
| :---: |
| equals |$} \underbrace{\text { plus }}_{2} \underbrace{}_{+0.25 t} \underbrace{\$ 0.25 \text { per }}_{0.25 t}$ topping.

The answer is A .

Example 2

Steve ran a 12-mile race at an average speed of 8 miles per hour. If Adam ran the same race at an average speed of 6 miles per hour, how many minutes longer than Steve did Adam take to complete the race?

(A) 9	(B) 12	(C) 16
(D) 24	(E) 30	

Hint Be careful about units like hours and minutes.

Solution Read the question carefully. You need to find a number of minutes, not hours. The phrase "longer than" means you will probably subtract.
Use the formula for motion.

$$
\text { distance }=\text { rate } \times \text { time or } d=r t
$$

Solve this equation for $t: t=\frac{d}{r}$.
For Steve's race, $t=\frac{12}{8}$ or $1 \frac{1}{2}$ hours.
For Adam's race, $t=\frac{12}{6}$ or 2 hours.
The question asks how many minutes longer did
Adam take. Adam took $2-1 \frac{1}{2}$ or $\frac{1}{2}$ hour longer.
Since $\frac{1}{2}$ hour is 30 minutes, the answer is E .

After you work each problem, record your answer on the answer sheet provided or on a piece of paper.

Multiple Choice

1. In order for a student to be eligible for financial aid at a certain school, a student's parents must have a combined annual income of less than $\$ 32,000$. If f is the father's income and m is the mother's income, which sentence represents the condition for financial aid? (Algebra Review)

$$
\begin{aligned}
& \text { (A) } f+m<\$ 32,000 \text { B } f+m>\$ 32,000 \\
& \text { (C) } f-m<\$ 32,000 \text { (D) } 2 f<\$ 32,000
\end{aligned}
$$

2. If the sum of two consecutive odd integers is 56 , then the greater integer equals(Algebra Review)
(A) 25 .
(B) 27 .
(D) 31 .
(E) 33 .
3. The distance an object covers when it moves at a constant speed, or rate, is given by the formula $d=r t$, where d is distance, r is rate, and t is time. How far does a car travel in $2 \frac{1}{2}$ hours moving at aconstant speed of 60 miles per hour? (Algebra Review)
(A) 30 mi
(B) 60 mi
(C) 150 mi
(D) 300 mi
4. If 3 more than x is 2 more than y, what is x in terms of y ? (Algebra Review)
(A) $y-5$
(B) $y-1$
(C) $y+1$
(D) $y+5$
(E) $y+6$
5. The annual salaries for the eight employees in a small company are $\$ 12,000, \$ 14,500$, $\$ 14,500, \$ 18,000, \$ 21,000, \$ 27,000, \$ 38,000$, and $\$ 82,000$. Which of these measures of central tendency would make the company salaries seem as large as possible?
(Statistics Review)
(A) mean
(C) mode
(B) median
(D) range
6. Shari's test scores in Spanish class are 73, 86,91 , and 82 . She needs at least 400 points to earn a B. Which inequality describes the number of points p Shari must yet earn in order to receive a B? (Algebra Review)

$$
\begin{array}{lll}
\text { (A) } p-332>400 & \text { (B) } p-332>400 \\
\text { (C) } p+332 \geq 400 & \text { (D) } 400-p \geq 332
\end{array}
$$

7. In $\triangle A B C, \angle A \cong \angle B$, and $m \angle C$ is twice the measure of $\angle B$. What is the measure, in degrees, of $\angle A$? (Lesson 5-2)
```
(A) }3
(B) 40
(C) 45 (D) 90
```


8. Which cannot be the perimeter of the triangle shown below? (Lesson 7-4)

Grid In

9. A car repair service charges $\$ 36$ per hour plus the cost of the parts. If Ken is charged $\$ 70.50$ for repairs that took 1.5 hours, what was the cost in dollars and cents of the parts used? (Algebra Review)

Extended Response

10. Mei Hua is buying a $\$ 445$ television set that is on sale for 30% off. The sales tax in her state is 6%. She reasons that she will save 30%, then pay 6%, so the total savings from the price listed will be 24%. She then calculates her price as $\$ 445-0.24(\$ 445)$. (Percent Review)
Part A Calculate what answer she gets.
Part B Is she right? If so, why? If not, why not, and what is the correct answer?

[^0]: mancinst
 Investigation For more information on triangle inequalities,
 visit: www.geomconcepts.com

